Microglia as a Therapeutic Target in Alzheimer's Disease

Kim Green, Ph.D.

Department of Neurobiology and Behavior
University of California, Irvine

Microglia

- Microglia are the immune cell of the brain.
- Comprise ~12% of all cells in the brain.
- Function to protect from infections, and to clean up debris following damage and injury.
- Microglial dysfunction implicated in traumatic brain injury, aging, and neurodegeneration

Activation of microglia

- Infection or damage causes microglia to become "activated"
- Primed to fight pathogens.
- After the infection/damage is contained microglia revert to resting state.

AD Neuropathology

AD Neuropathology

- Plaques composed of β-amyloid (Aβ) peptide
 - Initiates in cortical regions
- <u>Tangles</u> composed of hyperphosphorylated tau
 - Initiates in hippocampus (CA1)
- Synaptic/Neuronal dysfunction and death

Inflammation and Alzheimer's disease

 The AD brain is characterised by the presence of plaques and tangles, extensive neuronal loss and an inflammatory response.

• Microglia surround plaques, in an attempt to phagocytose $A\beta$ and remove it from the brain.

- They are unsuccessful, as the AD brain is still riddled with $A\beta$ plaques.
- However, now there is also an increasing chronic inflammatory process...

CSF1R

- In the brain, microglia express the majority of the colony stimulating factor 1 receptor
 - expressed on monocytes, macrophages, dendritic cells and osteoclasts
- Has 2 ligands CSF1 and **IL34**
 - Cause dimerization and autophosphorylation
- Involved in cell proliferation, survival and migration.

Evaluation of CSF1R antagonists

- We use PLX3397 (Plexxikon Inc.) entering Phase 3 clinical trials for Pigmented villonodular synovitis (PVNS), and Phase 2 for oncology indications.
- Specific for CSF1R and also related receptor c-Kit.

CSF1R inhibitors eliminate microglia

Microglial remnants seen throughout brain

Elmore and Najafi et al., Neuron 2014

Microglia are dependent on CSF1R signaling

- Administration of CSF1R inhibitors that cross the blood brain barrier lead to the rapid elimination of microglia throughout the CNS.
- Microglia undergo cell death.
- Peripheral macrophage/monocyte populations are not depleted.
- As microglia are the only cell type in the CNS to express CSF1R it provides a useful tool to study microglial function, as well as a potential therapeutic target.

Phenotype of microglia-depleted mice:

Tests of Anxiety

Elevated Plus Maze

Open Field

No Effect of Microglial Elimination on Anxiety

Elevated Plus Maze

Open Field

Elmore and Najafi et al. - Neuron (2014)

Tests of Motor Function

Open Field

Rotarod

No Effect of Microglial Elimination on Motor Function

Open Field

Rotarod

Elmore and Najafi et al. - Neuron (2014)

Tests of Cognitive Function

Barnes Maze

Fear Conditioning

No Effect of Microglial Elimination on Cognitive Function

Barnes Maze

Fear Conditioning

Elmore and Najafi et al. - Neuron (2014)

Interim Conclusions

- Pharmacological inhibition of the CSF1R results in rapid microglia elimination from the CNS in 7-21 days.
- Microglia are not overtly necessary for cognition or behavior.
- We can now directly study the roles of microglia in the healthy and diseased/injured/aged brain.
- Can microglial-elimination be a therapeutic for brain disorders?

Effects of microglial-elimination in Alzheimer's disease

Alzheimer's disease:

- Genetically modified mice develop Alzheimer's disease.
- They produce plaques in their brains, and become cognitively impaired.

CSF1R inhibition eliminates microglia in AD mice

- 3 months treatment in 23 month old 3xTg-AD mice.
- Removes >95% of all microglia.
- Is this beneficial?

Elimination of microglia improves learning

Elimination of microglia does not alter pathology

Elimination of microglia does not alter pathology

Elimination of microglia reduces inflammation

• Levels of II-1 β and TNF α are significantly reduced with microglial-elimination.

 Elevated levels of both of these are associated with memory impairments as well as synapto- and neurotoxicity.

Interim Summary

- Even microglia in the aged and diseased brain are fully dependent upon CSF1R signaling for their survival.
- We can achieve chronic microglial elimination in advanced AD mice.
- Elimination of microglia improves cognition, but has no impact on pathology.
- Treatment with CSF1R inhibitors may represent a useful therapy for AD and other disorders involving neuroinflammation.

Model of Neuronal Loss

- AD models have plaques and tangles but not extensive neuronal loss.
- Many drugs have progressed into human clinical trials after testing in AD models, and have then failed!
- We also utilise a mouse model of extensive neuronal OSS.

Lesion

Experimental Design

Control PLX3397 Lesion Lesion + PLX3397

Activated microglia are dependent upon CSF1R signaling for survival

Microglia elimination improves lesionassociated deficits on elevated plus maze

Microglia elimination improves performance on Morris water maze

Microglia elimination restores lesioninduced synaptic alterations

Conclusions

- Activated microglia are dependent upon signaling through CSF1R for survival
- Elimination of microglia following neuronal lesion facilitates:
 - Functional recovery
 - Synaptic alterations
- CSF1R inhibitors improve cognition in a model of AD and a model of robust neuronal loss. Therefore good rationale for developing further for neuroinflammatory disorders.

Acknowledgements

- Green Lab
 - Dr. Monica Elmore
 - Alli Haskell
 - Rachel Rice
 - Elizabeth Spangenberg
 - Dr. Maya Koike
 - Nabil Dagher
 - Rafael Lee

Frank LaFerla

Plexxikon Inc.

Dr. Brian West

Funding:

- Alzheimer's Association
- Whitehall Foundation
- American Federation for Aging Research
- Hellman Fellowship
- NIH/NINDS RO1

Microglial-elimination is fully reversible

- Once microglia are eliminated with CSF1R inhibitors then withdrawal of CSF1R inhibitors stimulates rapid repopulation with new microglia.
- New microglia arise from stem cells found throughout the CNS that divide and then differentiate into new microglia.

Elmore and Najafi et al., Neuron 2014

Rapid repopulation of the microglia-depleted brain

CSF1R inhibitors eliminate microglia during brain injury

Microglia-depleted mice have no behavioral deficits

 Depletion of microglia for 2 months does not effect Elevated plus maze, or Open field analyses.

Elmore and Najafi et al., Neuron 2014

Microglia-depleted mice have no learning deficits

 Mice depleted of microglia have significantly improved learning compared to intact animals.

Microglia-depleted mice have no learning deficits

 Mice depleted of microglia have significantly improved learning compared to intact animals.

Microglia-depleted mice have no motor deficits

- No deficits in Contextual Fear Conditioning
- No deficits in motor function in healthy mice

Elmore and Najafi et al., Neuron 2014

