

Stem Cells and the Study of Neurodegeneration

Tracy Young-Pearse, PhD September 12, 2014

Techniques for studying mechanisms of neurological disease

Differential vulnerability to neurodegenerative diseases

Spinocerebellar ataxia

Alzheimer's disease

Parkinson's disease

Huntington's disease

Development of stem cells from patients with Alzheimer's disease

Overview of induced pluripotent stem cells (iPSCs)

Human iPSC neural differentiation

Differentiation of human iPS cells to neuronal fates

iPS Cells

Red = Oct4 = pluripotent cells Green = MAP2 = neuronal cells Blue = TOPRO3 = all cells

Living neurons from our patients with neurodegenerative diseases

MAP2/GFAP

TAU/TOPRO3

Cerebral cortex and hippocampus

Memory Thought Awareness Attention Consciousness

Cerebellum Movement Balance Coordination Posture

$A\beta$ and Tau accumulate in the cerebral cortex prior to degeneration

tangles

Genome editing with CRISPR/Cas to generate isogenic lines:

APP mutation does not affect neuronal differentiation

Muratore et al, HMG, 2014

APP mutation leads to increased A β 42 and A β 38 production

Muratore et al, HMG, 2014

APP cleavage products increase over differentiation from immature to mature neuronal fates

APP cleavage products increase over differentiation from immature to mature neuronal fates

EEA-1/APP/MAP2/DAPI

Muratore et al, HMG, 2014

Higher Tau protein levels are observed in fAD-derived neurons

Muratore et al, HMG, 2014

A β -specific antibodies (3D6 and AW7) bind secreted A β

Muratore et al, HMG, 2014

Examining Glial Activation in Alzheimer's Disease

Muratore et al, PLOS ONE, in press

APPV717I induces GFAP expression in astrocytes-derived from iPSCs

APPV717I induces GFAP expression in human astrocytes

Aβ secreted from fAD neurons induces GFAP expression in human astrocytes

Differential vulnerability of neuronal subtypes in Alzheimer's disease

Directed differentiation of iPSCs to alternate neuronal fates

iPSCs directed to caudal neuronal fates show altered expression profiles

RA/Shh:

- + - + - + Fezf2 Tbr1 CTIP2

+

Reln

+

+

Six3

-

Dab1

8000-

7000-

6000-

5000-4000-

3000-T

2000-

1000-

+

Map2

+

Tau

Tuj1

Normalized expression

RA/Shh:

+RA/Shh

Measuring A β and sAPP α levels at the single cell level

Technology developed in JC Love lab (MIT) to study cytokine secretion

Current/Future directions: Measuring A β and sAPP α levels at the single cell level

Liao et al, unpublished

Current/Future directions: Measuring A β and sAPP α levels at the single cell level

Liao et al, unpublished

- 1. Generation of new stem cell (iPS) lines from patients with early-onset, familial Alzheimer's disease (fAD)
- 2. In all fates tested, the fAD APP V717I mutation leads to increased total A β , A β 38 and A β 42 generation
- 3. A β generation increases as stem cells differentiate to neuronal fates
- 4. Tau protein levels are increased in fAD neurons directed to a rostral but not caudal neuronal fate and A β -specific antibodies are able to rescue this phenotype
- 5. A β from fAD neurons stimulates GFAP expression in astrocytes
- 6. Directing differentiation to caudal fates versus rostral fates alters APP cleavage
- Microengraving can be used to determine which cell fates secrete the highest levels of Aβ, and compare drug responsiveness in different cell types

Acknowledgments

Young-Pearse Lab

Christina Muratore, PhD Heather Rice, PhD Meichen Liao, PhD Sarah Sullivan, PhD Priya Srikanth Dana Callahan Taehwan Shin <u>Collaborators</u> Dennis Selkoe, MD Dominic Walsh, PhD Chris Love, PhD Phil De Jager, MD David Bennett, MD

NATIONAL INSTITUTE ON AGING National Institutes of Health

Harvard NeuroDiscovery Center