

Cognitive Training Interventions for Delaying Cognitive Decline

Jessica B. Langbaum, Ph.D.

Principal Scientist, Banner Alzheimer's Institute

Associate Director, Alzheimer's Prevention Initiative

Disclosures

No relevant financial disclosures

Brain Fitness is Popular!

Your brain will thank you."

Major focus in a 2015 report from the Institute of Medicine

http://www.nap.edu/catalog/21693/cognitive-aging-progress-in-understanding-and-opportunities-for-action

Cognitive Stimulation vs. Training

- Cognitive stimulation: crossword puzzles, card games, etc.
- Cognitive training: formal instruction and strategies

Key Questions

- Does stimulation and/or training:
 - help maintain or enhance memory and thinking ability?
 - help with real world tasks?
 - transfer to another, non-trained cognitive domain?

Training Examples

- Randomized clinical trial the ACTIVE trial
- Training + non-pharmacological treatment - FINGER
- Embed in "real world" community settings - Experience Corps

ACTIVE

- Advanced Cognitive Training for Independent and Vital Elderly
- Memory, reasoning, or speed of processing training vs. control group

ACTIVE Participants

- Targeted older adults at risk for decline recruited from 6 sites across United States
- Excluded:
 - Age < 65 years
 - Substantial cognitive decline
 - MMSE < 23
 - self-reported Alzheimer's disease
 - Substantial functional decline
 - Assistance with dressing, personal hygiene, bathing
 - Specified predisposing medical conditions

Baseline Characteristics (N = 2,802)

Mean Age [range]	73.6±5.9 [65-94]
Gender, % Female	75.9%
Race, % African American	26.0%
Education, % HS diploma	88.6%
Marital status, % married	35.9%
Mean MMSE score [range]	27.3±2.0 [23-30]

Training in ACTIVE

- 10, 60-75 minute training sessions
- Small groups, led by instructor, individual & group exercises
- Focus on strategies for problem solving, remembering, or responding quickly to information
- Goal to apply learned strategies to real-world tasks
- Did not "teach to the test"

ACTIVE Conceptual Model

Willis et al, JAMA. 2006;296(23):2805-2814.

ACTIVE Training

Memory Training

- Grouping items into meaningful categories
- Visual imagery & associations
- Hierarchical ordering
- External aids & cues

Reasoning Training

- practice solving problems using rule/pattern
- Speed of Processing
 - Useful field of view

ACTIVE: Memory Training

Memory Man

ACTIVE: Memory Training

Memory Man

ACTIVE Reasoning: Finding the Pattern in Schedules

Sunday Sunday 1. Scan or look over every word

Sunday Sunday 2. Underline repeated words

Monday Monday 3. Say aloud the schedule

<u>Tuesday</u> Tuesday **4. Make slashes** between repetitions

Tuesday Tuesday

Wednesday Wednesday

Thursday Thursday

Thursday Thursday

Friday Friday

Look at Mr. Jones' medication schedule. Fill in the calendar for one week. Put an A, B, or C in the calendar when he should take each medication. If he should take two pills of a certain medication at one time, put AA or BB. Below is a sample calendar:

Time Of Day	Sun	Mon	Tues	Wed	Thurs	Fri	Sat
Morning	AA B	AA B	AA B				
Noon							
Evening	AA	AA	AA	AA	AA	AA	AA
Bedtime	С	С	С	С	С	С	С

ACTIVE 5 Year Results

Willis et al, JAMA. 2006;296(23):2805-2814.

ACTIVE: 10 Year Results: Memory

ACTIVE: 10 Year Results: Reasoning

ACTIVE: 10 Year Results: Speed of Processing

Impact on Everyday Activities

ACTIVE Findings To Date

- Observable benefits 5-10 years after training
- Effects appear earliest for speed of processing participants
- Memory-impaired participants only benefited from speed of processing and reasoning training
- No subjective memory improvement
- Reduces age-related declines in health-related quality of life

Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER)

- To avoid overwhelming the participants, not all lifestyle changes were implemented at once.
- The level of difficulty of the physical and cognitive exercises was increased over the course of the study.
- Efforts were made throughout the study to improve the participants' diet.

FINGER Results: 2 Years

Ngandu et al. Lancet (2015)

Novel Approach to Delaying Cognitive Decline

http://www.aarp.org/experience-corps/

Experience Corps

Fried et al (2004) J Urban Health

Experience Corps Participants

Variable	Intervention $(N = 70)$	Control $(N = 58)$
Age, M (SD)	70.1 (6.42)	68.4 (5.15)
Education (years), M (SD)	11.9 (2.54)	11.2 (2.66)
Baseline MMSE score, M (SD)	24.96 (3.45)	25.3 (2.60)
Annual income <\$15,000, %	65	82
Black, %	94	95
Female, %	83	93
Married, %	24	28
Number of health conditions	2.6 (1.7)	2.6 (1.3)
Persons with health conditions di	agnosed by a ph	ysician, %
Myocardial infarction	6	0
Angina	11	10
Congestive heart failure	8	5
High blood pressure	68	73
Diabetes	30	24
Stroke	5	0
Arthritis of knees/hip	43	40
Arthritis of hands	26	41
Cancer	9	5

Banner Alzheimer's Institute

Carlson et al (2008) Gerontologist

Experience Corps Results

	Inter	vention	Control	
Variable	Baseline	Follow-Up	Baseline	Follow-Up
Trail Making Test				
Part A (s)				
Impaired	95.2	56.5	90.2	55.2
Normal	56.3	51.1	55.0	56.8
Part B (s)				
Impaired	297.5	173.0	260.4	237.0
Normal	118.7	154.7	127.5	170.4*
Word list memory				
Immediate reca	II			
Impaired	19.3	20.9	21.6	19.6
Normal	21.4	19.9	20.7	21.3*
Delayed recall				
Impaired	5.0	7.0	6.4	5.6
Normal	5.9	5.6	6.3	6.6*
Rey-Osterrieth				
Copy score				
Impaired	18.4	17.8	16.5	15.2
Normal	20.0	17.8	19.9	17.9
Delayed recall				
Impaired	9.1	12.8	10.6	8.0
Normal	12.0	11.5	11.8	11.2

Carlson et al (2008) Gerontologist

Note: p < .05.

Experience Corps Findings

- Improved executive functioning and memory, particularly in participants with impaired executive functioning at start of program
- Improved social and physical activity (walking, stair climbing speed, strength) levels
- Short-term participation in community-based program focused on increasing cognitive & physical activity in a social, real-world setting may benefit abilities that are critical to functional independence

Brain Fitness & Computer Games

- Handful of small studies with brief followup
- Minor, short-term improvements that do not transfer to other domains
- Do not improve to the same level as a "young" (20s) person
- Take home: they don't hurt, but no evidence they help

Summary

- Cognitive training may delay cognitive decline in healthy older adults
- Limited evidence of training benefits in older adults with cognitive impairment
- Do not know if training delays progression to MCI or dementia
- Real world training offers short-term benefit >
 more research is needed for long-term effects
- Multi-faceted approach provides benefits up to 2 years after intervention

Thank you!

Questions?

