Frontotemporal dementia:
Where we’ve been
What’s on the horizon

Howard Rosen, M.D.
UCSF Department of Neurology
Memory and Aging Center
www.memory.ucsf.edu
Disclosures

• None
Overview

• FTD, What is it?
• Origins of symptoms
• Variants of FTD
• Diagnosis/misdiagnosis
• Neuropathology of FTD
 – Links to other disorders
• Neuroimaging
• Current treatments
• Future treatment
51 year old man with four years of personality change
• MRI at first visit, distinct regions of atrophy
 – Right >> Left temporal pole
 – Right >> Left medial temporal region, including amygdala
 – Orbitofrontal cortex
 – Anterior cingulate

• Two years later
 – Nearly mute
 – Could not complete any cognitive testing
Clinical Features of bvFTD

- Disinhibition/antisocial behavior
- Loss of concern for others
- Exceedingly poor judgment
- Overeating
- Compulsive behaviors (collecting)
- Loss of executive control
- Apathy
- Overly friendly
- Loss of disgust
Bob's hobbies

The wife of a man with FTD explains why they no longer attend church.
Is FTD Uncommon?

• Common cause pre-senile dementia
 – 1:1 with AD 45-64 years (Ratnavalli, Hodges 2002)
 – More common than AD below 60 yrs (Knopman 2004)

• Rare after 70?
 – 3% clinical prevalence of FTD 80-90 (2003 Skoog)
 – Include diseases with similar molecules: PSP, CBD, ALS even more common
 – Association TDP-43 & cognition independent of plaque, hippocampal sclerosis (Nelson 2008)
 – Tau and TDP-43 major proteins in “chronic traumatic encephalopathy” NFL football players’ dementia (also found following war trauma)
Orbitofrontal cortex (inhibition)

Dorsolateral PFC (Executive control)

Anterior cingulate cortex (drive)
FTD is associated with bizarre socioemotional changes because of its specific neuroanatomy.

Regions of gray matter atrophy in FTD and AD

FTD vs. Controls

AD vs. Controls

• p<0.05, corrected for multiple comparisons
Regions Unique to Individual Behaviors

Aberrant Motor Behavior (main effect)

Apathy (interaction, FTD/SD only)

Disinhibition (interaction, FTD/SD only)

Rosen et al. *Brain*, 2005
Traditional Frontal Neuropsychology: Mostly dorsolateral frontal

- Working memory (BA46) – digit back
- Generation – letters, animals, shapes
- Inhibition – Stroop, antisaccade, flanker task
- Alternate sequence – dorsolateral – Trails B
- Combination – Card sorts
- Abstraction – proverbs
Studies to establish the nature of emotional failure in FTD have discovered changes in self-conscious emotions

Embarrassment

- Emerges after violation of a social convention
- Reparation of disrupted social bonds
- Associated with mPFC

Sturm et al, Cog Affect Nsci, Epub/In press
Laboratory Measurement of Emotion

Embarrassment

- Karaoke task
- Subjects watch themselves singing “My Girl”

<table>
<thead>
<tr>
<th>Physiological Reactivity</th>
<th>Facial Behavior</th>
<th>Self Report</th>
</tr>
</thead>
</table>

How sad did you feel while watching the film?

1 2 3 4 5
A little A lot

Sturm et al, Cog Affect Nsci, Epub/In press
Patients with FTD show no embarrassment (despite showing normal reaction to more basic emotions)

• Physiological Reactivity
 • Composite: FTD < Controls
 • Individual channels:
 – FTD < Controls in heart rate, skin conductance, respiration depth

• Emotional Behavior

• Self-Report
 • Basic emotions: No differences
 • Self-conscious emotions: No differences

Sturm et al, Cog Affect Nsci, Epub/In press
Embarrassment: Neural Correlates

- Smaller right pACC volume is associated with lower physiological and behavioral reactivity during karaoke task.
- Early site of atrophy in bvFTD.

Sturm et al, Brain, 2006
Sturm et al, Cog Affect Nsci, Epub/In press
Emotional processing in FTD is impaired, correlated with right temporal atrophy

Rosen et al, Brain, 2002
Rosen et al, Dem Ger Cog Disord, 2004
Rosen et al, Neuropsychologia, 2006
3 traditional variants of frontotemporal dementia

Behavioral variant

Language variants

Semantic variant

Nonfluent variant

Also:
“Frontal variant” FTD
“FTD”
Semantic variant of Primary Progressive Aphasia (svPPA)

- Profound anomia
- Problems with word comprehension
- Fluent, empty speech
- Trouble with object recognition (agnosia)
- Trouble with recognition of familiar/famous faces
svPPA
Nonfluent variant of Primary Progressive Aphasia (nfvPPA)

- Hesitant, non-fluent, Broca-like speech
- Agrammatism
 - Decreased use of function words
 - Sometimes “telegraphic” speech
- Articulation difficulties
 - Difficulty with individual words
 - Speech apraxia
nfvPPA
Misdiagnosis of FTD

- Psychiatric syndromes
- Alzheimer’s disease
- Logopenic of progressive aphasia
FTD Misdiagnosis

Rates of Psychiatric Diagnosis within each Neurodegenerative Disease.

Regions of Atrophy in FTD
(Rosen et al, Neurology, 2002)

Regions atrophy Bipolar disorder (meta-analysis Bora et al, Biol Psych, 2010)
Alzheimer’s disease

• Sometimes misdiagnosed as FTD
• Mainly because of executive function
 – Disorganization
 – Distraction
 – Poor planning
 – Poor performance on cog testing (executive fxn)
Logopenic variant of primary progressive aphasia (lvPPA)

- Hesitant, nonfluent speech
 - Particularly due to word finding
- Islands of preserved speech/phrases
- Relatively good articulation
- Relatively poor comprehension
- Pathology is usually Alzheimer’s disease
Pathology in FTD

• Nomenclature
 – Frontotemporal lobar degeneration (FTLD)
• Two main pathologies (intracellular inclusions)
• Partially predicted by clinical
• Overlap with other disorders
 – Tau
 • 50% of bvFTD
 • Large proportion of nfvPPA
 • Progressive Supranuclear Palsy, Corticobasal Degeneration
 – TDP-43
 • 95% of svPPA
 • Amyotrophic Lateral Sclerosis (ALS)
 • bvFTD-ALS (about 15% of bvFTD)
 – bvFTD about 50/50 Tau/TDP-43
Genetics: Three Main Mutations

- At least 30% of all FTD
- 3 main mutations
 - **C9ORF72** (discovered last year)
 - Most common, ~40% of familial FTD, 5% of apparently sporadic FTD
 - Hexanucleotide (GGGGGCC) repeat abnormality (like Huntington’s, cerebellar ataxias)
 - bvFTD and ALS
 - Most common genetic cause of ALS
 - **Progranulin**
 - Probably next most common
 - can go posteriorly, present like AD
 - also bvFTD, CBD, PD, AD
 - **Tau**
 - bvFTD with PSP - like Parkinsonian syndromes
Tau

- Many isoforms
- Stabilizes microtubules
 - Intraneuronal transport infrastructure
Progranulin

• Secreted glycoprotein with growth factor-like and immunomodulatory activities
 – TNF receptor antagonist like activity
• Contains 7 full and one $\frac{1}{2}$-length granulin domains, which are released following proteolytic cleavage
• >60 pathogenic GRN mutations have been reported in patients with FTD and all are expected to result in haploinsufficiency
C9ORF72

- Functions unknown
- No previous disease associations
- Current mechanistic hypotheses around toxic accumulation of RNA
 - Possible interference with transcription of other DNA sequences
The landscape of FTD

Tauopathies
- Tau mutations
- PSP
- CBD
- svPPA
- nfvPPA

TDP-43opathies
- GRN, C9ORF72 mutations
- PSP-like
- CBD-like
- ALS

AD
- lvPPA
Diagnosis of FTLD

• Clinical features
 – Three main variants
 – Related disorders
 – “Possible” diagnosis
 – Criteria papers
 • Rascovsky et al, Brain, 2011
 • Gorno-Tempini et al, Neurology, 2011

• Imaging
 – MRI
 – PET
 – “Probable” diagnosis
 – Radiologists frequently miss
 • Suarez et al, Neurology, 2009

• Other objective features
 – Genetics
 – Molecular imaging
FDG-PET in FTLD

- Increased diagnostic certainty
 - Foster et al, Brain, 2007
 - Rabinovici et al, Neurology, 2011

- Medicare approved use of FDG-PET
 - Only indication for PET in neurodegenerative disease

- Possible role for other metabolic imaging
 - ASL perfusion
FTD Diagnosis: Amyloid Imaging

AD

FTLD

CONT

Rabinovici et al, Neurology, 2007
Rabinovici et al, Neurology, 2011
Amyloid Imaging is not 100% diagnostic

65 year old with PRGN mutation, AD like symptoms, Amyloid+

Atrophy map

FDG-PET

Amyloid

Perry et al, Archives of Neurol, In press
Current treatment of FTD

• Behavioral management
 • Environment
 • Family education

• Symptomatic management
 • SSRIs (e.g. citalopram)
 • Trazadone
 • Atypical antipsychotics
 • AVOID cholinesterase inhibitors in bvFTD
 • May exacerbate symptoms/increase agitation

• Specific treatment
 • Recent trial of memantine failed

• Speech therapy for language disorders
 • Under investigation
Future treatments

• Current/recent work
 – Longitudinal biomarker trials
 • Surrogate endpoints, stratification
 – Divunetide (microtubule stabilizing compound) for PSP
 • Failed
 – Methylene blue for bvFTD
 • Recently failed
 – Tau imaging agents
• Planned work
 – HDAC inhibitor and other drugs for GRN mutations
 • Raise PRGN levels
 – Anti-sense oligonucleotides
 – Tau antibody for PSP and other tau related forms of FTD
 – Beginning to develop “silencing” approaches to the C9ORF72 repeat expansion
Conclusions

• FTD is symptomatically complex
 – Symptoms come from anatomy
• FTD is pathologically, genetically complex
 – Multiple pathologies
 – Overlap with other syndromes (ALS, PSP, CBD)
• Diagnosis multimodal
 – Proper clinical characterization
 – Imaging
• Current treatments limited
• Future treatments will be aimed at specific proteinopathy
Thank you!
Restoring Progranulin Levels

THERAPEUTIC GOAL: Increase GRN transcription from the remaining WT allele
SCREEN: FDA-approved compound library using luciferase-tagged PGRN reporter
SAHA greatly altered progranulin levels

Joachim Herz & Gang Yu labs, UTSW
CTE: Amygdala/Tau

An illustrative case

• 55 year old man
• Hearing voices beginning early 2010
 – Yelling out window in response to his name
 – Making up stories
 – Voices telling him people died
 – Voices telling him his neighbors want to have sex with him
 – Goes to their houses
• No psychiatric history
An illustrative case

• 55 year old man
• Hearing voices beginning early 2010
 − Yelling out window in response to his name
 − Making up stories
 − Voices telling him people died
 − Voices telling him his neighbors want to have sex with him
 − Goes to their houses
• No psychiatric history
Case study (cont’d)

• Neuropsychological testing
 – Mild executive dysfunction

• MRI
 – Non-specific mild-moderate atrophy

• DIAGNOSIS
 – Initially MCI/Lewy body disease
 – Meets criteria for “Late life schizophrenia”
Follow up

• After around 1.5 - 2 years
 – Developed symptoms of FTD
 – Developed motor neuron disease
 – Died a few months ago

• Discovered to have C9ORF72 mutation