Lessons Learned of Mice (and Men) Developing the next-generation of AD mouse models

Frank M. LaFerla, PhD

Dean and Chancellor's Professor Director, UCI ADRC co-Director, MODEL-AD

Exciting News

#1	#1	#1
<i>Money</i> magazine ranked UCI #1 best college in the nation	Forbes magazine named UCI #1 in nation among public universities for "best value"	UCI named #1 college doing most for the American Dream in NYT Upshot
#1	9th	1 of 62

Recent Alzheimer's News

Uve TV . U.S. Edition +

By Sandee LaMotte, CNN () Updated 11:50 AM ET, Thu March 21, 2019

CNN Health + Food | Fitness | Wellness | Parenting | Live Longer

How Alzheimer's destroys the brain 01:38

(CNN) — It's another devastating blow in the search for a treatment for patients living with Alzheimer's disease.

zone". Recognizing the greatly increasing number of patients with this disease, many biopharma companies have invested a lot of resources in

in attacking this problem, only to be turned away in late stage studies as happened to Merck with its BACE inhibitor, verubecestat, and Lilly with its beta-amyloid antibody, solanezumab.

BIO

Me Hope, and Then It Ended I was a small piece in the search to find a core. Now I feel as if Tin getting erased, and medical science doesn't have any

BIOTECH

In shocking reversal, Biogen to submit experimental Alzheimer's drug for approval

By MATTHEW HERPER @matthewherper / OCTOBER 22, 2019

ATIONAL INSTITUTE ON AGING, NIH

PARTICIPANT BURDEN What is it to you?

Alzheimer's | 21st Century Plague

Alzheimer's Disease

In 2019

- » 5.8 million afflicted
- » Cost = \$290 Billion/yr
- » Medicare \$: 1 out of 5 for AD Care

By 2050

- » 14 million afflicted
- » Cost = \$1.1 Trillion/yr
- » Medicare \$: 1 out of 3 for AD care

NIH Alzheimer's Disease Centers

AS DISEASE RESERVENT OF THE OWNER OWNE

Waw axam or area

UCI MOND

NIH Centers of Excellence were established in 1984

· USC/UCI was part of the original five funded centers (Drs. Finch/Cotman)

Found at major medical institutions across the USA

 31 centers across the network

Goal

 Translate research advances into improved diagnosis and care and prevent and treat AD

Each center has its own area of emphasis

• But the network shares new research ideas, approaches, and data (NACC)

ADRC | Core Leaders

Chief Administrative Officer

Clinical Core Director

David Sultzer Clinical Core Director

Ira Lott Down Syndrome Core Director

Maria Corrada 90+ Core Director

Joshua Grill Associate Director **ORE** Core Director

Daniel Gillen Data Management and Statistics Core Director

Edwin Monuki Neuropathology Core Director

M Blurton-Jones iPSC Core Director

Craig Stark Biomarker Core Director

Elizabeth Head Research Education Component Director

UCI ADRC | New Developments

Recruitment Registry: Consent-to-Contact (C2C)

UCI ADRC | Research Overview

BIO SCI

Modeling Human Disease in Mice

Practical Reasons

Mice breed quickly; age over 2-3 year lifespan

Brain organization is comparable to humans

Many genes/proteins/pathways are conserved between humans and mice

Relatively "cheap" versus human studies

Insert and express human genes in mice, allowing them to develop human diseases/pathology, even in brain

Study disease processes, which are not possible in living humans

Evaluate new treatments and determine mechanism of action

Caveats

A mouse is not an accelerated human!

- Many AD-related biochemical and neuropathologic events may not develop in the normal lifespan of a mouse
- Need to be realistic, as not all findings will be translatable to humans
- Need to develop the next generation of animal models of the disease, particularly those mimic late-onset Alzheimer's disease

Preclinical studies need to be conducted in several different models to better mimic the heterogeneity in the human population Even in animal models, the sooner treatment begins the more likely the cognitive impairments are improved

Targeting Aß after other pathologies set in, particularly phosphotau and NFT pathology, does not rescue cognitive impairments

Combination therapies are likely to be required

Genetics of Alzheimer's

BIO SCI

Models of Human Disease (LaFerla)

Alzheimer's Disease ^{3xTg-AD} Arctic-tau

Lewy body 3x-Tg-AD x alpha-synuclein

Hippocampal sclerosis CaKII-tTA x TRE-DTa

Inclusion body myositis MCK-APP

Tauopathy hTau mouse

Human Aß Knockin Humanized <u>wildtype</u> Aß (floxed)

3xTg-AD Model | Plaques and Tangles

Reasons for Clinical Trial Failure

Concerns with Existing Animal Models of AD

UCI BIO SCI

Recommendations from NIA AD Summit (2015)

Develop the next generation of *in vivo* models based on human data to explore ADRD

Standardize process to develop and characterize models; rapid availability to all researchers for preclinical drug development

Align pathophysiological features of AD models with corresponding stages of clinical disease using translatable biomarkers

BIC

3

2

Establish guidelines for rigorous preclinical testing in animal models and report positive and negative findings

MODEL-AD

A Izheimer's Disease

MODEL-AD Consortium

BIO SCI

Early versus Late-onset AD

BIO

3xTg-AD Model | Plaques and Tangles

Key Challenges in Modeling Late Onset Alzheimer's

Likely require the "humanization" of several key AD related genes

Not all human pathologies may occur in a single mouse model

Pathology should ensue from aging/environmental factors vs. overexpression or FAD mutations

Genetic background may have a profound impact on phenotype

Gene/Variant Prioritization

Systematic assessment of LOAD loci

MODEL-AD

Model Organism Development and Evaluation for Late-onset Alzheimer's Disease

UCI MODEL-AD

Deep Phenotyping Pipeline

UCI BIO SCI

Summary | hAß-KI Mice

DNA sequence analysis shows that hA β -KI mice encode human wt Aβ	hA β -KI and wt mice have similar APP levels	hA β -KI mice display significant synaptic and cognitive impairments (CX and HC)
Important gene expression in metabolic, neuroplasticity and transcriptional regulation pathways are altered in the hAβ-KI mice	hA β -KI mice shows age-dependent amyloid accumulation	hA β -KI mice contain seeds that facilitate Aβ aggregation

Construction Plan for Model Development

Platform Mouse: Humanized Aβ and Tau

GWAS variants

- 1. ABI3 S209F
- 2. ABCA7 V1599M
- 3. BIN1 K358R and rs2279590
- 4. EPHA1 P460L
- 5. PICALM H458R
- 6. CLU rs9331888

Crosses

- hAβ-KI x ApoE4
- hAβ-KI x ApoE4 x variants

UCI BIO SCI

- $hA\beta$ -KI x hTau
- hAβ-KI x hTau x variants

Resource Sharing

Mice

Enabling researchers to find the right model

Data

Mouse genetic information: variant(s), strain background

Mouse phenotype data: RNA-seq, imaging, etc.

Preclinical data: standards, protocols, results

Preclinical results searchable on AlzPED

Available from JAX mouse repository without restrictions

ALZHEIMER'S MOUSE MODEL RESOURCE

Approaches to Study Complex Disorders

such as Alzheimer's disease

UCI BIO SCI

Value of AD Mouse Models

BIC

Preclinical Studies:

Considerations for Moving from Bench to Bedside

Multiple appropriate models (including sexes)

Studies across age spectrum

Multiple doses/ reversal studies

Multiple sites

Mechanism of Action

What does a successful model of late-onset AD look like?

- Age-related, region-specific
- Plaques
- Tau 4/3; NFTs
- Synaptic Loss
- Neuronal Loss
- Neuroinflammation
- Cognitive Decline
- Behavior (Anxiety)
- Sleep

CONSTRUCT

- No mutations
- Physiological expression
- Humanize all genes?

PREDICTIVE

- Translatability
- Insights into the human disease
- Identification of novel targets
- Biomarkers
- Imaging
- 'Omics

MODEL-AD.ORG

MODEL-AD

Model Organism Development & Evaluation for Late-Onset Alzheimer's Disease

MODEL-AD consortium consisting of a Center at Indiana University, The Jackson Laboratory, and lionetworks and a Center at the University of California Irvine has been established by the Institute on Aging to:

- op the next generation of in vivo AD models based on human data
- e a standardized and rigorous process for characterization of animal models
- e pathophysiological features of AD models with corresponding stages of clinical disease inslatable biomarkers
- guidelines for rigorous preclinical testing in animal models

apid availability of animal models, protocols and validation data to all researchers for al drug development Search ...

RECENT POSTS

MODEL-AD presentations at AAIC 2018

MODEL-AD presentations at ICMN

Indiana U. Alzheimer's symposium

New method for identifying candidate loci for late-onset Alzheimer's disease published.

Workshop on the use of mouse models to study neurodegenerative disease

QUICK LINKS

AMP-AD Knowledge Portal

JAX AD Models

Team

Frank LaFerla Co-Director

Andrea Tenner Co-Director

Andrea Wasserman Administrative Coordinator

Stefania Forner Project Manager

Kim Green "Phenotyping" (Disease Model Project)

Marcelo Wood "Phenotying" (Disease Model Project)

Grant MacGregor Head (Disease Model Project)

D. Baglietto-Vargas Research Scientist (Disease Model Project)

BIO SCI

Ali Mortazavi Head (Bioinformatics and Disease Modeling Core)

The MODEL-AD Consortium

Indiana University

Bruce Lamb, Program Director Paul Territo, PTC Head Andrew Saykin, BDMC Co-Head Adrian Oblak, Project Manager Kwangsik Nho Li Shen Tatiana Foroud Dino Ghetti David Jones Sarah Quinney Deborah DeBusk, Administrator

Sage Bionetworks

Lara Mangravite, BDMC Co-Head Larsson Omberg Ben Logsdon Mette Peters Solveig Sieberts Yooree Chae

The Jackson Laboratory

Gareth Howell, DMP Head Greg Carter, BDMC Head Mike Sasner, DMP Co-Head Stacey Rizzo, PTC Co-Head Harriet Williams, Project Manager Christoph Preuss Asli Uyar Yi Li Ravi Pandey Cai John Nikhil Milind Kristen Onos Martha Abbott, Administrator

National Institute on Aging

Suzana Petanceska Lorenzo Refolo U54 AG054345, U54 AG054349

UC Irvine

Frank LaFerla, Program Director Andrea Tenner, Program Director Grant MacGregor, DMP Head Ali Mortazavi, BDMC Head Kim Green, DMP Co-Head Marcelo Wood, DMP Co-Head Stefania Forner, Project Manager David Baglietto-Vargas Shan Jiang Shimako Kawauchi Sherrilyn Collins Jonathan Neumann Eniko Kramar Celia da Cunha Edna Hingco Dominic Javonillo Jimmy Phan Dina Matheos Maria Fonseca Andrea Wasserman, Administrator

Contact www.model-ad.org modelad@iupui.edu @Model_ad_alz

External Advisory Board

David Bennett Robbie Brinton Ron Demattos Joel Dudley Marcie Glicksman Barry Greenberg Cindy Lemere Frank Longo Lennart Mucke Steve Perrin Linda Van Eldik (Chair)

