

UCI MIND

30th SoCal Alzheimer's Disease Research Conference

Disclosures

• I am an Associate Editor for the journal Neurology.

Alzheimer's disease is on the rise

From Hebert et al., Neurology 2013

DEMENTIA

9 WAYS TO REDUCE YOUR RISK

1 IN 3

cases of dementia could be prevented by addressing these lifestyle factors

INCREASE

Education

Physical Activity

Social Contact

DECREASE

Hearing Loss

Hypertension

Obesity

Smoking

Depression

Diabetes

Source: Lancet Commission on Dementia Prevention and Care Credit: Keck Medicine of USC

National Academy of Medicine: Preventing Dementia

- Recommendations from this systematic review:
 - Cognitive training
 - Control of high BP (especially during ages 35-65)
 - Increasing physical activity

Vascular contribution to Alzheimer's Disease

- In autopsy studies of patients who were diagnosed with Alzheimer's disease, >50% had evidence of strokes ("silent strokes")
 - Fewer Alzheimer's-type changes are seen in people with higher levels of vascular changes in the brain (for an equivalent level of dementia)

AD=Alzheimer's Disease I=Infarcts LB=Lewy Bodies

Schneider et al., *Annals* of *Neurology* 2009

Heart disease risk factors (vascular risk factors) that may also affect brain health

- High blood pressure
- Diabetes
- Smoking
- High cholesterol
- Obesity
- Physically inactive lifestyle
- Poor diet
- Inflammation

How do heart disease risk factors lead to problems with memory and thinking?

- Strokes
- "Silent" strokes or related brain changes
- Not enough flow/ oxygen to brain through diseased blood vessels
- Changes in ability to clear brain toxins or block access to the brain

Iadecola & Gottesman, Circulation Research 2019 (124(7): 1025-1044

Importance of considering the whole life course

 Vascular factors have strongest relationships with cognitive decline and dementia when considered in middle age

 Changes in vascular risk factor status over the life course may change the way a risk factor affects an individual person

From Livingston et al., Lancet 2017

High Blood Pressure: New AHA/ ACC definitions in 2017

Blood Pressure Categories

BLOOD PRESSURE CATEGORY	SYSTOLIC mm Hg (upper number)		DIASTOLIC mm Hg (lower number)
NORMAL	LESS THAN 120	and	LESS THAN 80
ELEVATED	120 - 129	and	LESS THAN 80
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 1	130 - 139	or	80 - 89
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 2	140 OR HIGHER	or	90 OR HIGHER
HYPERTENSIVE CRISIS (consult your doctor immediately)	HIGHER THAN 180	and/or	HIGHER THAN 120

©American Heart Association

heart.org/bplevels

October 25, 2019

Higher BP, especially in middle age, is associated with worse cognition

Figure 2. Adjusted Association of Visit 2 (1990-1992) Systolic Blood Pressure Change Among Whites

Adapted from Gottesman et al., JAMA Neurology 2014

Table 2. Cox Proportional Hazards Regression Model of Time to Incident Dementia Overall and Stratified by Race

	Hazard Ratio (95% CI)			
Variable	Full Eligible Cohort (n = 15 407) ^a	Black (n = 4004)	White (n = 11 403)	
Female	0.89 (0.79-0.99)	0.87 (0.72-1.06)	0.92 (0.80-1.05)	
Black	1.36 (1.21-1.54)	NA	NA	
Visit 1 age, y ^b				
44-49	1 [Reference]	1 [Reference]	1 [Reference]	
50-54	2.04 (1.66-2.49)	2.22 (1.66-2.98)	1.98 (1.49-2.62)	
55-59	3.97 (3.28-4.81)	3.53 (2.63-4.73)	4.37 (3.37-5.65)	
60-66	8.06 (6.69-9.72)	6.20 (4.64-8.28)	9.54 (7.41-12.27)	
Educational attainment				
<high school<="" td=""><td>1.37 (1.20-1.57)</td><td>1.61 (1.28-2.03)</td><td>1.29 (1.09-1.53)</td></high>	1.37 (1.20-1.57)	1.61 (1.28-2.03)	1.29 (1.09-1.53)	
High school graduate or GED	1.05 (0.93-1.20)	1.17 (0.90-1.53)	1.02 (0.88-1.18)	
>High school	1 [Reference]	1 [Reference]	1 [Reference]	
Visit 1 BMI				
Underweight	0.99 (0.53-1.87)	1.15 (0.36-3.66)	0.92 (0.43-1.97)	
Normal	1 [Reference]	1 [Reference]	1 [Reference]	
Overweight	1.05 (0.92-1.19)	0.95 (0.73-1.22)	1.08 (0.93-1.26)	
Obese	1.14 (0.99-1.31)	0.92 (0.71-1.20)	1.22 (1.03-1.45)	
Visit 1 smoking ^b				
Current	1.41 (1.23-1.61)	1.07 (0.85-1.35)	1.62 (1.37-1.92)	
Former	1.00 (0.89-1.13)	0.77 (0.61-0.98)	1.13 (0.97-1.31)	
Never	1 [Reference]	1 [Reference]	1 [Reference]	
APOE ε4 genotype ^b				
0 Alleles	1 [Reference]	1 [Reference]	1 [Reference]	
≥1 Alleles	1.98 (1.78-2.21)	1.61 (1.34-1.92)	2.23 (1.96-2.54)	

Visit 1 hypertension

Normal	ormal		ce]
Prehyperten	sion	1.31 (1.14	-1.51)
Hypertensio	n	1.39 (1.22	-1.59)
200 to <240	0.87 (0.77-0.98)	0.91 (0.74-1.13)	0.86 (0.74-1.00)
≥240	0.91 (0.80-1.04)	0.78 (0.62-0.98)	0.99 (0.84-1.16)

Hypertension in middle age is associated with a 39% higher chance of dementia

Prehypertension in middle age is associated with a 31% higher chance of dementia...

compared to people with normal BP's

From Gottesman et al., JAMA Neurology 2017

Life course and hypertension

- In our studies, similar associations are not found for high blood pressure in later life
 - Risk of cognitive decline and dementia is most pronounced for people with midlife (aged 45-64 in our study) high blood pressure

JOHNS HOPKINS

Low blood pressure in late life may not be as well tolerated for people with midlife hypertension

Figure 2. Kaplan-Meier Curves for Time to Dementia Onset for Standard Hypertension Definition Blood Pressure Groups

Normotension and normotension

Normotension and hypertension

Normotension and hypotension

Hypertension and hypertension

Hypertension and hypotension

459

715

446

459

715

339

445

94

Hypertension and hypotension Hypertension and hypertension

Normotension and hypotension Normotension and hypertension

Normotension and normotension

C Dementia probability (baseline age ≥74 y)

Key Points

Question Are specific midlife to late-life longitudinal blood pressure patterns associated with increased risk of dementia among older adults?

Finding In this prospective cohort study that included 4761 participants with 24-year follow-up and blood pressure measurements at midlife and at late life, those with midlife and late-life hypertension (hazard ratio, 1.49) and those with midlife hypertension and late-life hypotension (hazard ratio, 1.62) had higher risk for incident dementia compared with those who remained normotensive.

Meaning Patterns of blood pressure in midlife and late life may be associated with differing risks for incident dementia.

459

711

339

442

91

457

708

338

439

91

431

647

315

411

81

227

335

177

206

40

Walker et al, JAMA 2019

Life course blood pressure trajectories may need to consider earlier exposures than midlife

Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): an epidemiological study

Lancet Neurol 2019

Interpretation High and increasing blood pressure from early adulthood into midlife seems to be associated with increased WMHV and smaller brain volumes at 69–71 years of age. We found no evidence that blood pressure affected cognition or cerebral amyloid- β load at this age. Blood pressure monitoring and interventions might need to start around 40 years of age to maximise late-life brain health.

Diabetes

From Selvin et al., Diabetes Care 2006

Diabetes as a risk factor for cognitive decline

Figure 2. Difference in global cognitive Z score decline by dinical category of HbA_{1c} level compared with decline in persons without diabetes and HbA_{1c} level <5.7%.

Table 2. Cox Proportional Hazards Regression Model of Time to Incident Dementia Overall and Stratified by Race

	Hazard Ratio (95% CI)			
Variable	Full Eligible Cohort (n = 15 407) ^a	Black (n = 4004)	White (n = 11 403)	
Female	0.89 (0.79-0.99)	0.87 (0.72-1.06)	0.92 (0.80-1.05)	
Black	1.36 (1.21-1.54)	NA	NA	
Visit 1 age, y ^b				
44-49	1 [Reference]	1 [Reference]	1 [Reference]	
50-54	2.04 (1.66-2.49)	2.22 (1.66-2.98)	1.98 (1.49-2.62)	
55-59	3.97 (3.28-4.81)	3.53 (2.63-4.73)	4.37 (3.37-5.65)	
60-66	8.06 (6.69-9.72)	6.20 (4.64-8.28)	9.54 (7.41-12.27)	
Educational attainment				
<high school<="" td=""><td>1.37 (1.20-1.57)</td><td>1.61 (1.28-2.03)</td><td>1.29 (1.09-1.53)</td></high>	1.37 (1.20-1.57)	1.61 (1.28-2.03)	1.29 (1.09-1.53)	
High school graduate or GED	1.05 (0.93-1.20)	1.17 (0.90-1.53)	1.02 (0.88-1.18)	
>High school	1 [Reference]	1 [Reference]	1 [Reference]	
Visit 1 BMI				
Underweight	0.99 (0.53-1.87)	1.15 (0.36-3.66)	0.92 (0.43-1.97)	
Normal	1 [Reference]	1 [Reference]	1 [Reference]	
Overweight	1.05 (0.92-1.19)	0.95 (0.73-1.22)	1.08 (0.93-1.26)	
Obese	1.14 (0.99-1.31)	0.92 (0.71-1.20)	1.22 (1.03-1.45)	
Visit 1 smoking ^b				
Current	1 41 (1 23-1 61)	1 07 (0 85-1 35)	1 67 /1 37-1 97\	
APOE ε4 genoty 0 Alleles	/pe ^u	1 [Refer	ence]	
≥1 Alleles		1.98 (1.78-2.21)		
Visit 1 diabetes	;	1.77 (1.53-2.04)		
NUTHIAL	1 [kererence]	1 [weierence]	1 [vererence]	
Prehypertension	1.31 (1.14-1.51)	1.17 (0.86-1.59)	1.35 (1.14-1.59)	
Hypertension	1.39 (1.22-1.59)	1.36 (1.04-1.77)	1.37 (1.17-1.60)	
Visit 1 total cholesterol, mg/dL <200	1 [Reference]	1 [Reference]	1 [Reference]	
mg/dL	1 [Reference] 0.87 (0.77-0.98)	1 [Reference] 0.91 (0.74-1.13)	1 [Reference] 0.86 (0.74-1.00)	

Diabetes in middle age is associated with a 77% higher chance of dementia.

This near-doubling is almost as high as the risk from the APOE e4 genotype, the strongest genetic risk factor for Alzheimer's disease.

From Gottesman et al., JAMA Neurology 2017

Smoking, Heart Disease, and

Dementia

	Hazard Ratio (95% CI)			
Variable	Full Eligible Cohort (n = 15 407) ^a	Black (n = 4004)	White (n = 11 403)	
Female	0.89 (0.79-0.99)	0.87 (0.72-1.06)	0.92 (0.80-1.05)	
Black	1.36 (1.21-1.54)	NA	NA	
Visit 1 age, y ^b				
44-49	1 [Reference]	1 [Reference]	1 [Reference]	
50-54	2.04 (1.66-2.49)	2.22 (1.66-2.98)	1.98 (1.49-2.62)	
55-59	3.97 (3.28-4.81)	3.53 (2.63-4.73)	4.37 (3.37-5.65)	
60-66	8.06 (6.69-9.72)	6.20 (4.64-8.28)	9.54 (7.41-12.27	
Educational attainment				
<high school<="" td=""><td>1.37 (1.20-1.57)</td><td>1.61 (1.28-2.03)</td><td>1.29 (1.09-1.53)</td></high>	1.37 (1.20-1.57)	1.61 (1.28-2.03)	1.29 (1.09-1.53)	
High school graduate or GED	1.05 (0.93-1.20)	1.17 (0.90-1.53)	1.02 (0.88-1.18)	
>High school	1 [Reference]	1 [Reference]	1 [Reference]	
Visit 1 BMI				
Underweight	0.99 (0.53-1.87)	1.15 (0.36-3.66)	0.92 (0.43-1.97)	
Normal	1 [Dafaranca]	1 [Dafaranca]	1 [Dafaranca]	
Visit 1 smoking	g ^b			
Current	1.41 (1.23-1.61)		23-1.61)	
Former		1.00 (0.	89-1.13)	
Never		1 [Reference]		

1 [Keterence] 1 [Keterence] **U** Alleles 1 [Keterence] ≥1 Alleles 1.98 (1.78-2.21) 1.61 (1.34-1.92) 2.23 (1.96-2.54) Unknown APOF 1.18 (0.89-1.56) 1.84 (0.97-3.47) 1.11 (0.81-1.52) 1.77 (1.53-2.04) 1.69 (1.39-2.07) Visit 1 diabetes 1.85 (1.50-2.29) Visit 1 hypertension Normal 1 [Reference] 1 [Reference] 1 [Reference] Prehypertension 1.31 (1.14-1.51) 1.17 (0.86-1.59) 1.35 (1.14-1.59) 1.39 (1.22-1.59) Hypertension 1.36 (1.04-1.77) 1.37 (1.17-1.60) Visit 1 total cholesterol. mg/dL <200 1 [Reference] 1 [Reference] 1 [Reference] 200 to < 240 0.87 (0.77-0.98) 0.91 (0.74-1.13) 0.86 (0.74-1.00)

From Gottesman et al., JAMA Neurology 2017

0.78 (0.62-0.98)

0.91 (0.80-1.04)

≥240

0.99 (0.84-1.16)

High cholesterol: Risk factor for cognitive decline

BRFSS, 1987

BRFSS, 1988

BRFSS, 1989

BRFSS, 1990

(*BMI ≥30, or ~ 30 lbs. overweight for 5′ 4″ person)

No Data <a> <10% 10%-14% <a> 15%-19%

BRFSS, 1994

(*BMI ≥30, or ~ 30 lbs. overweight for 5′ 4″ person)

No Data < 10% 10%-14% 15%-19%

BRFSS, 1995

(*BMI ≥30, or ~ 30 lbs. overweight for 5′ 4″ person)

No Data 15%-19%

Obesity in midlife is associated with higher risk of dementia

SAD: sagittal abdominal diameter Whitmer et al, Neurology 2008

Obesity and Dementia

	Number of observations in the analysis								
	-28	-24	-20	-16	-12	-8	-4		
Years	to	to	to	to	to	to	to		
	-24	-20	-16	-12	-8	-4	0		
Dementia free	9135	7161	5513	2944	4086	6353	6040		
Dementia cases	219	196	141	126	147	133	112		

	Number of observations in the analysis								
	-28	-24	-20	-16	-12	-8	-4		
Years	to	to	to	to	to	to	to		
	-24	-20	-16	-12	-8	-4	0		
Controls	1460	1381	1044	1003	1245	1135	1512		
Cases	219	196	141	126	147	133	112		

Singh-Manoux et al., Alzheimer's and Dementia 2017

JOHNS HOPKINS

Physical activity in midlife and risk of dementia

Wang et al., Am J Geriatr Psychiatry, 2014

Alzheimer's & Dementia

Alzheimer's & Dementia (2018) 1-9

Research Article

Leisure-time physical activity sustained since midlife and preservation of cognitive function: The Atherosclerosis Risk in Communities Study

Priya Palta^{a,*}, A. Richey Sharrett^b, Jennifer A. Deal^b, Kelly R. Evenson^a, Kelley Pettee Gabriel^{c,d}, Aaron R. Folsom^e, Alden L. Gross^b, B. Gwen Windham^f, David Knopman^g, Thomas H. Mosley^f, Gerardo Heiss^a

Leisure-time Physical Activity level

Visit 3 Physical Activity
Persistence of Physical Activity from Visit 1-3

Reference: High physical activity

Adjusted for age, sex, education, race-center, ApoE4, smoking, household income, neighborhood SES

Diet and nutrition

Mediterranean Diet

Years After Baseline Interview

Years After Baseline Interview

from Wengreen et al., Amer J Clin Nutrition 2013

HOW TWO HEALTHY DIETS COMPARE

HOW I WO HEALTH
DASH
The second second
The Party of the P
The state of the s
FOOD GROUP DAILY SERVINGS

FOOD GROUP	DAILY SERVINGS
Whole grains	7 to 8
Vegetables	4 to 5
Fruits	4 to 5
Dairy, low-fat or nonfat	2 to 3
Lean meats, poultry, fish	2 or fewer
Nuts, seeds, dry beans	4 to 5 per week
Fats and oils	2 to 3
Sweets	5 per week

Fish.

seafood

Poultry, eggs,

Meats and

sweets

Wine

yogurt, cheese

MEDITERRANEAN

From www.health.harvard.edu

Eat at least twice

Eat moderate

portions daily

Eat less often

than other foods

Drink in moderation

to weekly

a week

В

Estimated Mean 3MS Score

JAMA | Original Investigation

Association Between Midlife Vascular Risk Factors and Estimated Brain Amyloid Deposition

Rebecca F. Gottesman, MD, PhD; Andrea L. C. Schneider, MD, PhD; Yun Zhou, PhD; Josef Coresh, MD, PhD; Edward Green, MD; Naresh Gupta, MD; David S. Knopman, MD; Akiva Mintz, MD; Arman Rahmim, PhD; A. Richey Sharrett, MD, DrPH; Lynne E. Wagenknecht, DrPH; Dean F. Wong, MD, PhD; Thomas H. Mosley, PhD

JAMA. 2017;317(14):1443-1450.

Table 3. Adjusted Odds Ratios for the Association of Midlife and Late-Life Number of Vascular Risk Factors With Global Cortex SUVR >1.2 Overall and Stratified by APOE ϵ 4 Genotype (N = 322)

	Overall (n = 322)		0 APOE ε4 Alleles (n = 220)		1 or 2 APOE ε4 Alleles (n = 100)	
Risk Factors ^a	No. With SUVR >1.2/Total No. (%)	Adjusted OR (95% CI) ^b	No. With SUVR >1.2/Total No. (%)	Adjusted OR (95% CI) ^b	No. With SUVR >1.2/Total No. (%)	Adjusted OR (95% CI) ^b
Midlife (Study V	/isit 1, 1987-1989)					
Vascular risk factors						
0	20/65 (30.8)	1 [Reference]	14/47 (29.8)	1 [Reference]	6/18 (33.3)	1 [Reference]
1	62/123 (50.4)	1.88 (0.95-3.73)	37/85 (43.5)	1.36 (0.61-3.05)	25/38 (65.8)	3.10 (0.84-11.50)
≥2	82/134 (61.2)	2.88 (1.46-5.69)	45/90 (50.0)	1.86 (0.83-4.14)	37/44 (84.1)	9.15 (2.27-36.89)
Late life (Study	Visit 5, 2011-2013)					
Vascular risk factors						
0	13/35 (37.1)	1 [Reference]	6/23 (26.1)	1 [Reference]	7/12 (58.3)	1 [Reference]
1	37/82 (45.1)	1.02 (0.43-2.43)	16/50 (32.0)	1.38 (0.43-4.39)	21/32 (65.6)	0.56 (0.12-2.67)
≥2	114/205 (55.6)	1.66 (0.75-3.69)	74/149 (49.7)	2.21 (0.78-6.26)	40/56 (71.4)	1.03 (0.25-4.29)

Abbreviations: OR, odd ratio; SUVK, standardized uptake value ratio.

Models are adjusted for age (at visit 5, 2011-2013), sex, race, education level, and APOE ε4 genotype.

Vascular risk factors included body mass index ≥30, current smoking, hypertension, diabetes, and total cholesterol ≥200 mg/dL.

Association between number of risk factors and brain amyloid is reduced when later-life risk factors are considered

Figure 1. Adjusted Odds Ratios for Global Cortex Florbetapir SUVRs >1.2 by Number of Vascular Risk Factors, Midlife Through Late Life

No. of Risk Factors by Study Visit	No. With Elevated SUVR/Total No. (%)	Adjusted Odds Ratio (95% CI)		
Visit 1 (1987-1989)				
≥2	82/134 (61.2)	2.88 (1.46-5.69)		
1	62/123 (50.4)	1.88 (0.95-3.73)	-	-
0	20/65 (30.8)	1 [Reference]	i i	
Visit 2 (1990-1992)				
≥2	80/137 (58.4)	2.24 (1.19-4.23)		
1	57/108 (52.8)	1.88 (0.97-3.62)	1	_
0	27/77 (35.1)	1 [Reference]		
Visit 3 (1993-1995)			,	
≥2	83/146 (56.9)	2.18 (1.12-4.26)		
1	60/111 (54.1)	1.98 (1.00-3.92)		
0	21/65 (32.3)	1 [Reference]		
Visit 4 (1996-1998)				
≥2	93/153 (60.8)	1.98 (1.01-3.89)		
1	47/111 (42.3)	1.07 (0.53-2.14)		
0	24/58 (41.4)	1 [Reference]		
Visit 5 (2011-2013)				
≥2	114/205 (55.6)	1.66 (0.75-3.69)		
1	37/82 (45.1)	1.02 (0.43-2.43)		
0	13/35 (37.1)	1 [Reference]		
			0.4 1.	.0
			Adjusted	Odds R

Is there evidence that treatment of vascular risk prevents dementia?

- Previously, few studies had shown a benefit from treatment of risk factors to prevent dementia
- The recent "SPRINT-MIND" trial showed that tight control of blood pressure (to a goal of Systolic BP<120 mm Hg) was associated with 15% fewer cases of a combined outcome of MCI and dementia (and fewer MCI cases, but no difference in dementia alone)

JOHNS HOPKINS

JAMA | Original Investigation

Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia

A Randomized Clinical Trial

The SPRINT MIND Investigators for the SPRINT Research Group

SPRINT-MIND: Williamson et al, JAMA 2019

Figure 2. Probable Dementia by Treatment Group

Key Points

Question Does intensive blood pressure control reduce the occurrence of dementia?

Findings In this randomized clinical trial that included 9361 adults with hypertension, randomization to a systolic blood pressure target of less than 120 mm Hg compared with less than 140 mm Hg resulted in a rate of probable dementia of 7.2 vs 8.6 cases per 1000 person-years, a difference that was not statistically significant.

Meaning Among adults with hypertension, intensive blood pressure control did not significantly reduce the risk of probable dementia.

Table 2. Incidence of Probable Dementia and Mild Cognitive Impairment by Treatment Group

	Treatment Group					
	Intensive		Standard		-	P Value
Outcomes	No. With Cases per 10 Outcome/Person-Years Person-Years		No. With Cases per 1000 Outcome/Person-Years Person-Years		Hazard Ratio (95% CI) ^a	
Probable dementia	149/20569	7.2	176/20 378	8.6	0.83 (0.67-1.04)	.10
Mild cognitive impairment ^b	287/19690	14.6	353/19 281	18.3	0.81 (0.69-0.95)	.007
Composite of mild cognitive Impairment or probable dementia	402/19873	20.2	469/19 488	24.1	0.85 (0.74-0.97)	.01

^a Intensive treatment group vs standard treatment group based on Cox proportional hazards regression.

b Participants adjudicated as having probable dementia at the first follow-up visit (year 2) do not contribute to the analyses of mild cognitive impairment.

Multi-modal approaches to treatment & prevention: Mixed results

- FINGER trial (Ngandu et al., Lancet 2015): randomized Finnish participants to 2-year multidomain intervention (diet, exercise, cognitive training, vascular risk factor monitoring) vs control
- 2-year followup was better in the intervention group, for cognitive change
- PreDIVA Trial: Evaluated new dementia cases, and found no difference in people randomized to a multidomain vascular intervention over 6 years compared to those with standard care (Moll van Charante et al., Lancet 2016)

Take Home Messages

- Risk factors for heart disease and stroke are also risk factors for cognitive decline and dementia, and many of these are modifiable
- These vascular risk factors may directly contribute to changes in the brain that cause Alzheimer's disease
- Focusing on vascular health in middle age is especially important for the maintenance of brain health
- Aggressive treatment of high blood pressure reduces risk of mild cognitive impairment or dementia
- Treatment aimed at overall health: lifestyle, diet/ exercise, and vascular risk, may plan an important role in preserving brain health

Acknowledgements

Johns Hopkins:

- Josef Coresh
- A.Richey Sharrett
- Andrea Schneider
- Andreea Rawlings
- Keenan Walker
- Aozhou Wu
- Dean Wong
- Yun Zhou
- Arman Rahmim
- Marilyn Albert
- SCAN Lab

University of Minnesota

- Pam Lutsey

University of Mississippi Medical Center

- Thomas Mosley
- Edward Green

Emory University: Alvaro Alonso

Mayo Clinic:

- David Knopman
- Cliff Jack

George Washington University:

Melinda Power

Wake Forest University:

- Lynne Wagenknecht
- Akiva Mintz
- Timothy Hughes

University of North Carolina, Chapel Hill:

- Sonia Davis
- Lisa Wruck (now Duke)
- David Couper

Hagerstown Imaging: Naresh Gupta

Acknowledgements

Funding Sources:

NIH/ NIA (ARIC-PET, K24)

NIH: NHLBI, NINDS, NIA (ARIC, ARIC-NCS)

McKhann Scholar Fund/ Dana Foundation

Avid Radiopharmaceuticals: Isotope for ARIC-PET study

