Risks and Prevention Across the Lifespan
 UCI MIND

30 ${ }^{\text {th }}$ SoCal Alzheimer's Disease Research Conference

Presented by: Rebecca Gottesman, MD PhD
October 25, 2019

Disclosures

- I am an Associate Editor for the journal Neurology.

Alzheimer's disease is on the rise

From Hebert et al., Neurology 2013

DEMENILA
 9 WAYS TO REDUCE YOUR RISK

National Academy of Medicine: Preventing Dementia

- Recommendations from this systematic review:
- Cognitive training
- Control of high BP (especially during ages 35 65)
- Increasing physical activity

Vascular contribution to Alzheimer's Disease

- In autopsy studies of patients who were diagnosed with Alzheimer's disease, >50\% had evidence of strokes ("silent strokes")
- Fewer Alzheimer's-type changes are seen in people with higher levels of vascular changes in the brain (for an equivalent level of dementia)

Mild Cognitive Impairment

\qquad

Probable AD

\qquad

AD=Alzheimer's Disease I=Infarcts
LB=Lewy Bodies
Schneider et al., Annals of Neurology 2009

Heart disease risk factors (vascular risk factors) that may also affect brain health

- High blood pressure
- Diabetes
- Smoking
- High cholesterol
- Obesity
- Physically inactive lifestyle
- Poor diet
- Inflammation

How do heart disease risk factors lead to problems with memory and thinking?

- Strokes
- "Silent" strokes or related brain changes

- Not enough flow/ oxygen to brain through diseased blood vessels
- Changes in ability to clear brain toxins or block access to the brain

October 25, 2019

Iadecola \& Gottesman, Circulation Research 2019 (124(7): 1025-1044

Importance of considering the whole life course

- Vascular factors have strongest relationships with cognitive decline and dementia when considered in middle age
- Changes in vascular risk factor status over the life course may change the way a risk factor affects an individual person

High Blood Pressure: New AHA/ ACC definitions in 2017

Blood Pressure Categories

BLOOD PRESSURE CATEGORY	SYSTOLIC mm Hg (upper number)		DIASTOLIC mm Hg (lower number)
NORMAL	LESS THAN 120	and	LESS THAN 80
ELEVATED	$\mathbf{1 2 0 - 1 2 9}$	and	LESS THAN 80
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 1	$\mathbf{1 3 0 - 1 3 9}$	or	$\mathbf{8 0 - 8 9}$
HICH BLOOD PRESSURE (HYPERTENSION) STACE 2	$\mathbf{1 4 0}$ OR HIGHER	or	90 OR HICHER
HYPERTENSIVE CRISIS (consult your doctor immediately)	HICHER THAN 180	and/or	HIGHER THAN 120

©American Heart Association
heart.org/bplevels

Muntner et al., Circulation 2017

Higher BP, especially in middle age, is associated with worse cognition

Flgure 2. Adjusted Assoclation of Visit 2 (1990-1992) Systolic Blood Pressure Change Among Whites

Adapted from Gottesman et al., JAMA Neurology 2014

Life course and hypertension

- In our studies, similar associations are not found for high blood pressure in later life
- Risk of cognitive decline and dementia is most pronounced for people with midlife (aged 45-64 in our study) high blood pressure

Low blood pressure in late life may not be as well tolerated for people with midlife hypertension

Life course blood pressure trajectories may need to consider earlier exposures than midlife

Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46):
an epidemiological study

Interpretation High and increasing blood pressure from early adulthood into midlife seems to be associated with increased WMHV and smaller brain volumes at 69-71 years of age. We found no evidence that blood pressure affected cognition or cerebral amyloid- β load at this age. Blood pressure monitoring and interventions might need to start around 40 years of age to maximise late-life brain health.

Diabetes

From Selvin et al., Diabetes
Care 2006

Diabetes as a risk factor for cognitive decline

Figere 2. Differnnce in global cognitive Z score dedine by dinical category of $\mathrm{Hb}_{4 \mathrm{k}}$ level comparsd with decline in persons without diabetes and $\mathrm{HbA}_{4 \mathrm{c}}$ lowil $\times 5.7 \%$.

Smoking, Heart Disease, and

 Dementia

Table 2. Cox Proportional Hazards Regression Model of Time to Incident Dementia Overall and Stratified by Race

Variable	Hazard Ratlo (95\% CI)		
	Full Eligible Cohort ($\mathrm{n}=15407)^{a}$	Black $(n=4004)$	White ($\mathrm{n}=11403$)
Female	0.89 (0.79-0.99)	0.87 (0.72-1.06)	0.92 (0.80-1.05)
Black	1.36 (1.21-1.54)	NA	NA
Visit 1 age, $\mathrm{y}^{\text {b }}$			
44-49	1 [Reference]	1 [Reference]	1 [Reference]
50-54	2.04 (1.66-2.49)	2.22 (1.66-2.98)	1.98 (1.49-2.62)
55-59	3.97 (3.28-4.81)	3.53 (2.63-4.73)	4.37 (3.37-5.65)
60-66	8.06 (6.69-9.72)	6.20 (4.64-8.28)	9.54 (7.41-12.27)
Educational attainment			
<High school	1.37 (1.20-1.57)	1.61 (1.28-2.03)	1.29 (1.09-1.53)
High school graduate or GED	1.05 (0.93-1.20)	1.17 (0.90-1.53)	1.02 (0.88-1.18)
>High school	1 [Reference]	1 [Reference]	1 [Reference]
Visit 1 BMI			
Underweight	0.99 (0.53-1.87)	1.15 (0.36-3.66)	0.92 (0.43-1.97)
Narmal	1 rDafaranral	1 [Dofaranra)	1 [Dafaranral

VIsIt 1 smoking ${ }^{\text {b }}$

From Gottesman et al., JAMA Neurology 2017

High cholesterol: Risk factor for cognitive decline

From Power et al., Alzheimer's and Dementia 2017

Obesity Trends* Among U.S. Adults BRFSS, 1987

\square No Data $\square<10 \% \quad \square 10 \%-14 \%$

Obesity Trends* Among U.S. Adults BRFSS, 1988
 $$
\text { (*BMI } \geq 30 \text {, or ~ } 30 \text { lbs. overweight for 5' 4" person) }
$$

 (*BMI ≥ 30, or ~ 30 lbs. overweight for 5' 4" person)

 (*BMI ≥ 30, or ~ 30 lbs. overweight for 5' 4" person)}
No Data $\square<10 \% \quad \square 10 \%-14 \%$

Obesity Trends* Among U.S. Adults BRFSS, 1989
 $$
\text { (*BMI } \geq 30 \text {, or } \sim 30 \text { lbs. overweight for 5' 4" person) }
$$

\square No Data $\square<10 \% \quad \square$ 10\%-14\%

Obesity Trends* Among U.S. Adults BRFSS, 1990
 ```(* BMI \geq30, or ~ 30 lbs. overweight for 5' 4" person)```

No Data $\square<10 \% \quad \square 10 \%-14 \%$

JUHINS HUPkIIS's
mEDICINE

Obesity Trends* Among U.S. Adults BRFSS, 1991

Obesity Trends* Among U.S. Adults

BRFSS, 1992

Obesity Trends* Among U.S. Adults

 BRFSS, 1993

Obesity Trends* Among U.S. Adults

BRFSS, 1994

$$
\text { (*BMI } \geq 30 \text {, or } \sim 30 \text { lbs. overweight for 5' 4" person) }
$$

| No Data $\quad \square<10 \% ~$ |
| :--- | :--- |
| \square | $10 \%-14 \% \quad \square \quad 15 \%-19 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 1995```
(* BMI \geq30, or ~ 30 lbs. overweight for 5' 4" person)
```


$\square$ No Data $\square<10 \% \square 10 \%-14 \% \quad \square$

## Obesity Trends* Among U.S. Adults BRFSS, 1996



## Obesity Trends* Among U.S. Adults BRFSS, 1997


$\square$ No Data $\square<10 \% \quad \square 10 \%-14 \% \quad \square 20 \%$

## Obesity Trends* Among U.S. Adults BRFSS, 1998


$\square$ No Data $\square<10 \% \quad \square 10 \%-14 \% \quad \square 20 \%$

## Obesity Trends* Among U.S. Adults BRFSS, 1999 <br> (*BMI $\mathbf{\geq 3 0}$, or $\mathbf{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)


$\square$ No Data $\square<10 \% \quad \square 10 \%-14 \% \quad \geq 20 \%$

## Obesity Trends* Among U.S. Adults BRFSS, 2000


$\square$ No Data $\square<10 \% \quad \square 10 \%-14 \% \quad \square 20 \%$

## Obesity Trends* Among U.S. Adults BRFSS, 2001


$\square$ No Data $\square<10 \% \quad \square 10 \%-14 \% \square \quad 20 \%-\sqrt{\square} \quad \geq 250 \%$

## Obesity Trends* Among U.S. Adults

 BRFSS, 2002(*BMI $\geq \mathbf{3 0}$, or $\mathbf{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)



## Obesity Trends* Among U.S. Adults BRFSS, 2003


$\square$ No Data $\square<10 \% \quad \square 10 \%-14 \% \square \square 20 \%-2 \square$

## Obesity Trends* Among U.S. Adults

 BRFSS, 2004
$\square$ No Data $\square<10 \% \quad \square 10 \%-14 \% \square \quad 20 \%-\sqrt{\square} \quad \geq 250 \%$

## Obesity Trends* Among U.S. Adults BRFSS, 2005




## Obesity Trends* Among U.S. Adults BRFSS, 2006




## Obesity Trends* Among U.S. Adults BRFSS, 2007




## Obesity Trends* Among U.S. Adults BRFSS, 2008




## Obesity Trends* Among U.S. Adults BRFSS, 2009




## Obesity Trends* Among U.S. Adults BRFSS, 2010




## Obesity in midlife is associated with higher risk of dementia



SAD: sagittal abdominal diameter
Whitmer et al, Neurology 2008

## Obesity and Dementia




|  | Number of observations in the analysis |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Years | -28 <br> to <br> -24 | -24 <br> to <br> -20 | -20 <br> to <br> -16 | -16 <br> to <br> -12 | -12 <br> to <br> -8 | -8 <br> to <br> -4 | -4 <br> to <br> 0 |
| Dementia <br> free | 9135 | 7161 | 5513 | 2944 | 4086 | 6353 | 6040 |
| Dementia <br> cases | 219 | 196 | 141 | 126 | 147 | 133 | 112 |


|  | Number of observations in the analysis |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Years | -28 <br> to <br> -24 | -24 <br> to <br> -20 | -20 <br> to <br> -16 | -16 <br> to <br> -12 | -12 <br> to <br> -8 | -8 <br> to <br> -4 | -4 <br> to <br> 0 |
| Controls | 1460 | 1381 | 1044 | 1003 | 1245 | 1135 | 1512 |
| Cases | 219 | 196 | 141 | 126 | 147 | 133 | 112 |

Singh-Manoux et al., Alzheimer's and Dementia 2017

## Physical activity in midlife and risk of dementia



Wang et al., Am J Geriatr Psychiatry, 2014

## Research Article

Leisure-time physical activity sustained since midlife and preservation of cognitive function: The Atherosclerosis Risk in Communities Study

Priya Palta ${ }^{\text {a, }}$, A. Richey Sharrett ${ }^{\text {b }}$, Jennifer A. Deal ${ }^{\text {b }}$, Kelly R. Evenson ${ }^{\text {a }}$, Kelley Pettee Gabriel ${ }^{\text {c,d }}$, Aaron R. Folsom ${ }^{e}$, Alden L. Gross ${ }^{\text {b }}$, B. Gwen Windham ${ }^{f}$, David Knopman ${ }^{\text {g }}$, Thomas H. Mosley ${ }^{f}$, Gerardo Heiss ${ }^{\text {a }}$


## Leisure-time Physical Activity level

- Visit 3 Physical Activity

A Persistence of Physical Activity from Visit 1-3

> Reference: High physical activity

## Diet and nutrition



JAMA | Original Investigation

## Association Between Midlife Vascular Risk Factors and Estimated Brain Amyloid Deposition

Rebecca F. Gottesman, MD, PhD; Andrea L. C. Schneider, MD, PhD; Yun Zhou, PhD; Josef Coresh, MD, PhD; Edward Green, MD; Naresh Gupta, MD; David S. Knopman, MD; Akiva Mintz, MD; Arman Rahmim, PhD;
A. Richey Sharrett, MD, DrPH; Lynne E. Wagenknecht, DrPH; Dean F. Wong. MD, PhD; Thomas H. Mosley, PhD

JAMA. 2017;317(14):1443-1450.

Table 3. Adjusted Odds Ratios for the Assoclation of Midlife and Late-Life Number of Vascular Risk Factors With Global Cortex SUVR >1.2 Overall and Stratified by APOE $\varepsilon 4$ Genotype $(\mathrm{N}=322)$

| Risk Factors ${ }^{\text {a }}$ | $\begin{aligned} & \text { Overall } \\ & (\mathrm{n}=322) \end{aligned}$ |  | 0 APOE $\varepsilon 4$ Alleles$(\mathrm{n}=220)$ |  | $\begin{aligned} & 1 \text { or } 2 \text { APOE } \varepsilon 4 \text { Alleles } \\ & (\mathrm{n}=100) \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. With SUVR $>1.2 /$ Total No. (\%) | $\begin{aligned} & \text { Adjusted OR } \\ & (95 \% \mathrm{Cl})^{\mathrm{b}} \end{aligned}$ | No. With SUVR $>1.2 /$ Total No. (\%) | $\begin{aligned} & \text { Adjusted OR } \\ & (95 \% \mathrm{Cl})^{\mathrm{b}} \end{aligned}$ | No. With SUVR <br> $>1.2 /$ Total No. (\%) | $\begin{aligned} & \text { Adjusted OR } \\ & (95 \% \mathrm{CI})^{\mathrm{b}} \end{aligned}$ |
| Midlife (Study Visit 1, 1987-1989) |  |  |  |  |  |  |
| Vascular risk factors |  |  |  |  |  |  |
| 0 | 20/65 (30.8) | 1 [Reference] | 14/47 (29.8) | 1 [Reference] | 6/18 (33.3) | 1 [Reference] |
| 1 | 62/123 (50.4) | 1.88 (0.95-3.73) | 37/85 (43.5) | 1.36 (0.61-3.05) | 25/38 (65.8) | 3.10 (0.84-11.50) |
| $\geq 2$ | 82/134 (61.2) | 2.88 (1.46-5.69) | 45/90 (50.0) | 1.86 (0.83-4.14) | 37/44 (84.1) | 9.15 (2.27-36.89) |


| Late life (Study Visit 5, 2011-2013) |  |  |  |  |  |  |
| :--- | :---: | :--- | :---: | :--- | :--- | :--- |
| Vascular risk <br> factors |  |  |  |  |  |  |
| 0 | $13 / 35(37.1)$ | 1 [Reference] | $6 / 23(26.1)$ | 1 [Reference] | $7 / 12(58.3)$ | 1 [Reference] |
| 1 | $37 / 82(45.1)$ | $1.02(0.43-2.43)$ | $16 / 50(32.0)$ | $1.38(0.43-4.39)$ | $21 / 32(65.6)$ | $0.56(0.12-2.67)$ |
| $\geq 2$ | $114 / 205(55.6)$ | $1.66(0.75-3.69)$ | $74 / 149(49.7)$ | $2.21(0.78-6.26)$ | $40 / 56(71.4)$ | $1.03(0.25-4.29)$ |

[^0][^1]
## Association between number of risk factors and brain amyloid is reduced when later-life risk factors are considered

Figure 1. Adjusted Odds Ratios for Global Cortex Florbetapir SUVRs >1.2 by Number of Vascular Risk Factors, Midlife Through Late Life


## Is there evidence that treatment of vascular risk prevents dementia?

- Previously, few studies had shown a benefit from treatment of risk factors to prevent dementia
- The recent "SPRINT-MIND" trial showed that tight control of blood pressure (to a goal of Systolic BP<120 mm Hg) was associated with $15 \%$ fewer cases of a combined outcome of MCl and dementia (and fewer MCl cases, but no difference in dementia alone)


## JAMA | Original Investigation

## Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia

## A Randomized Clinical Trial

SPRINT-MIND:
Williamson et al, JAMA 2019

The SPRINT MIND Investigators for the SPRINT Research Group


## Key Points

Question Does intensive blood pressure control reduce the occurrence of dementia?

Findings In this randomized clinical trial that included 9361 adults with hypertension, randomization to a systolic blood pressure target of less than 120 mm Hg compared with less than 140 mm Hg resulted in a rate of probable dementia of 7.2 vs 8.6 cases per 1000 person-years, a difference that was not statistically significant.

Meaning Among adults with hypertension, intersive blood pressure control did not significantly reduce the risk of probable dementia.

| Outcomes | Treatment Group |  |  |  | Hazard Ratlo (95\% Cl) ${ }^{\text {a }}$ | P Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Intensive |  | Standard |  |  |  |
|  | No. With Outcome/Person-Years | Cases per 1000 Person-Years | No. With Outcome/Person-Years | $\begin{aligned} & \text { Cases per } 1000 \\ & \text { Person-Years } \end{aligned}$ |  |  |
| Probable dementla | 149/20569 | 7.2 | 176/20378 | 8.6 | 0.83 (0.67-1.04) | . 10 |
| Mild cognitive impaliment ${ }^{\text {b }}$ | 287/19690 | 14.6 | 353/19 281 | 18.3 | 0.81 (0.69-0.95) | . 007 |
| Composite of mild cognitive impalrment or probable dementia | 402/19873 | 20.2 | 469/19 488 | 24.1 | 0.85 (0.74-0.97) | . 01 |

JOHNS HOPKINS

## Multi-modal approaches to treatment \& prevention: Mixed results



- FINGER trial (Ngandu et al., Lancet 2015): randomized Finnish participants to 2-year multidomain intervention (diet, exercise, cognitive training, vascular risk factor monitoring) vs control
- 2-year followup was better in the intervention group, for cognitive change
- PreDIVA Trial: Evaluated new dementia cases, and found no difference in people randomized to a multidomain vascular intervention over 6 years compared to those with standard care (Moll van Charante et al., Lancet 2016)
Control group

| Number at risk |
| :---: |
| Control group |
| Intervention group |
| 1601 |

1853

## Take Home Messages

- Risk factors for heart disease and stroke are also risk factors for cognitive decline and dementia, and many of these are modifiable
- These vascular risk factors may directly contribute to changes in the brain that cause Alzheimer's disease
- Focusing on vascular health in middle age is especially important for the maintenance of brain health
- Aggressive treatment of high blood pressure reduces risk of mild cognitive impairment or dementia
- Treatment aimed at overall health: lifestyle, diet/ exercise, and vascular risk, may plan an important role in preserving brain health


## Acknowledgements

## Johns Hopkins:

- Josef Coresh
- A.Richey Sharrett
- Andrea Schneider
- Andreea Rawlings
- Keenan Walker
- Aozhou Wu
- Dean Wong
- Yun Zhou
- Arman Rahmim
- Marilyn Albert
- SCAN Lab

University of Minnesota

- Pam Lutsey

University of Mississippi Medical Center

- Thomas Mosley
- Edward Green

Emory University: Alvaro Alonso
Mayo Clinic:

- David Knopman
- Cliff Jack

George Washington University:

- Melinda Power

Wake Forest University:

- Lynne Wagenknecht
- Akiva Mintz
- Timothy Hughes

University of North Carolina, Chapel Hill:

- Sonia Davis
- Lisa Wruck (now Duke)
- David Couper

Hagerstown Imaging: Naresh Gupta

## Acknowledgements



## Funding Sources:

NIH/ NIA (ARIC-PET, K24)
NIH: NHLBI, NINDS, NIA (ARIC, ARIC-NCS)
McKhann Scholar Fund/ Dana Foundation
Avid Radiopharmaceuticals: Isotope for ARIC-PET study


ARIC



[^0]:    Abbreviationcon, odtriatu; suvk, standaralzeduplumewalue ratio.
    Vascular risk factors included body mass index $\geq 30$, current smoking.

[^1]:    ${ }^{5}$ Models are adjusted for age (at visit 5, 2011-2013), sex, race, education level, and APOE $\varepsilon 4$ genotype.

